34 research outputs found

    Supervised contrastive learning over prototype-label embeddings for network intrusion detection

    Get PDF
    Producción CientíficaContrastive learning makes it possible to establish similarities between samples by comparing their distances in an intermediate representation space (embedding space) and using loss functions designed to attract/repel similar/dissimilar samples. The distance comparison is based exclusively on the sample features. We propose a novel contrastive learning scheme by including the labels in the same embedding space as the features and performing the distance comparison between features and labels in this shared embedding space. Following this idea, the sample features should be close to its ground-truth (positive) label and away from the other labels (negative labels). This scheme allows to implement a supervised classification based on contrastive learning. Each embedded label will assume the role of a class prototype in embedding space, with sample features that share the label gathering around it. The aim is to separate the label prototypes while minimizing the distance between each prototype and its same-class samples. A novel set of loss functions is proposed with this objective. Loss minimization will drive the allocation of sample features and labels in embedding space. Loss functions and their associated training and prediction architectures are analyzed in detail, along with different strategies for label separation. The proposed scheme drastically reduces the number of pair-wise comparisons, thus improving model performance. In order to further reduce the number of pair-wise comparisons, this initial scheme is extended by replacing the set of negative labels by its best single representative: either the negative label nearest to the sample features or the centroid of the cluster of negative labels. This idea creates a new subset of models which are analyzed in detail. The outputs of the proposed models are the distances (in embedding space) between each sample and the label prototypes. These distances can be used to perform classification (minimum distance label), features dimensionality reduction (using the distances and the embeddings instead of the original features) and data visualization (with 2 or 3D embeddings). Although the proposed models are generic, their application and performance evaluation is done here for network intrusion detection, characterized by noisy and unbalanced labels and a challenging classification of the various types of attacks. Empirical results of the model applied to intrusion detection are presented in detail for two well-known intrusion detection datasets, and a thorough set of classification and clustering performance evaluation metrics are included.Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación - Fondo Europeo de Desarrollo Regional (grant RTI2018-098958-B-I00

    Deep Learning Model for Multimedia Quality of Experience Prediction Based on Network Flow Packets

    Full text link
    [EN] Quality of experience (QoE) is the overall acceptability of an application or service, as perceived subjectively by the end user. In particular, for video quality the QoE is dependent of video transmission parameters. To monitor and control these parameters is critical in modern network management systems, but it would be better to be able to monitor the QoE itself (in terms of both interpretation and accuracy) rather than the parameters on which it depends. In this article we present the first attempt to predict video QoE based on information directly extracted from the network packets using a deep learning model. The QoE detector is based on a binary classifier (good or bad quality) for seven common classes of anomalies when watching videos (blur, ghost, etc.). Our classifier can detect anomalies at the current time instant and predict them at the next immediate instant. This classifier faces two major challenges: first, a highly unbalanced dataset with a low proportion of samples with video anomaly, and second, a small amount of training data, since it must be obtained from individual viewers under a controlled experimental setup. The proposed classifier is based on a combination of a convolutional neural network (CNN), recurrent neural network, and Gaussian process classifier. Image processing, which is the common domain for a CNN, has been expanded to QoE detection. Based on a detailed comparison, the proposed model offers better performance metrics than alternative machine learning algorithms, and can be used as a QoE monitoring function in edge computingThis work has been funded by the Ministerio de Economia y Competitividad del Gobierno de Espana and the Fondo de Desarrollo Regional (FEDER) within the project "Inteligencia distribuida para el control y adaptacion de redes dinamicas definidas por software, Ref: TIN2014-57991-C3-2-P," and also by the Ministerio de Economia y Competitividad in the Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento with the projects "Distribucion inteligente de servicios multimedia utilizando redes cognitivas adaptativas definidas por software, Ref: TIN2014-57991-C3-1-P" and "Red Cognitiva Definida por Software Para Optimizar y Securizar Trafico de Internet de las Cosas con Informacion Critica, Ref TIN2017-84802-C2-1-P."Lopez-Martin, M.; Carro, B.; Lloret, J.; Egea, S.; Sánchez-Esguevillas, A. (2018). Deep Learning Model for Multimedia Quality of Experience Prediction Based on Network Flow Packets. IEEE Communications Magazine. 56(9):110-117. https://doi.org/10.1109/MCOM.2018.170115611011756

    Intelligent IoT Traffic Classification Using Novel Search Strategy for Fast Based-Correlation Feature Selection in Industrial Environments

    Full text link
    [EN] Internet of Things (IoT) can be combined with machine learning in order to provide intelligent applications to the network nodes. Furthermore, IoT expands these advantages and technologies to the industry. In this paper, we propose a modification of one of the most popular algorithms for feature selection, fast-based-correlation feature (FCBF). The key idea is to split the feature space in fragments with the same size. By introducing this division, we can improve the correlation and, therefore, the machine learning applications that are operating on each node. This kind of IoT applications for industry allows us to separate and prioritize the sensor data from the multimedia-related traffic. With this separation, the sensors are able to detect efficiently emergency situations and avoid both material and human damage. The results show the performance of the three FCBF-based algorithms for different problems and different classifiers, confirming the improvements achieved by our approach in terms of model accuracy and execution time.This paper was supported in part by the Ministerio de Economia y Competitividad del Gobierno de Espana and the Fondo de Desarrollo Regional within the project Inteligencia distribuida para el control y adaptacion de redes dinamicas definidas por software under Grant TIN2014-57991-C3-1-P, in part by the Ministerio de Educacion, Cultura y Deporte, through the Ayudas para contratos predoctorales de Formacion del Profesorado Universitario FPU (Convocatoria 2015) under Grant FPU15/06837, and in part by the Ministerio de Economia y Competitividad in the Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento within the Project TIN2017-84802-C2-1-P. (Corresponding author: Jaime Lloret.)Egea, S.; Rego Mañez, A.; Carro, B.; Sánchez-Esguevillas, A.; Lloret, J. (2018). Intelligent IoT Traffic Classification Using Novel Search Strategy for Fast Based-Correlation Feature Selection in Industrial Environments. IEEE Internet of Things. 5(3):1616-1624. https://doi.org/10.1109/JIOT.2017.2787959S161616245

    A semantic autonomous video surveillance system for dense camera networks in smart cities

    Get PDF
    Producción CientíficaThis paper presents a proposal of an intelligent video surveillance system able to detect and identify abnormal and alarming situations by analyzing object movement. The system is designed to minimize video processing and transmission, thus allowing a large number of cameras to be deployed on the system, and therefore making it suitable for its usage as an integrated safety and security solution in Smart Cities. Alarm detection is performed on the basis of parameters of the moving objects and their trajectories, and is performed using semantic reasoning and ontologies. This means that the system employs a high-level conceptual language easy to understand for human operators, capable of raising enriched alarms with descriptions of what is happening on the image, and to automate reactions to them such as alerting the appropriate emergency services using the Smart City safety network

    An intelligent surveillance platform for large metropolitan areas with dense sensor deployment

    Get PDF
    Producción CientíficaThis paper presents an intelligent surveillance platform based on the usage of large numbers of inexpensive sensors designed and developed inside the European Eureka Celtic project HuSIMS. With the aim of maximizing the number of deployable units while keeping monetary and resource/bandwidth costs at a minimum, the surveillance platform is based on the usage of inexpensive visual sensors which apply efficient motion detection and tracking algorithms to transform the video signal in a set of motion parameters. In order to automate the analysis of the myriad of data streams generated by the visual sensors, the platform’s control center includes an alarm detection engine which comprises three components applying three different Artificial Intelligence strategies in parallel. These strategies are generic, domain-independent approaches which are able to operate in several domains (traffic surveillance, vandalism prevention, perimeter security, etc.). The architecture is completed with a versatile communication network which facilitates data collection from the visual sensors and alarm and video stream distribution towards the emergency teams. The resulting surveillance system is extremely suitable for its deployment in metropolitan areas, smart cities, and large facilities, mainly because cheap visual sensors and autonomous alarm detection facilitate dense sensor network deployments for wide and detailed coveraMinisterio de Industria, Turismo y Comercio and the Fondo de Desarrollo Regional (FEDER) and the Israeli Chief Scientist Research Grant 43660 inside the European Eureka Celtic project HuSIMS (TSI-020400-2010-102)

    Improved Short-Term Load Forecasting Based on Two-Stage Predictions with Artificial Neural Networks in a Microgrid Environment

    Get PDF
    Short-Term Load Forecasting plays a significant role in energy generation planning, and is specially gaining momentum in the emerging Smart Grids environment, which usually presents highly disaggregated scenarios where detailed real-time information is available thanks to Communications and Information Technologies, as it happens for example in the case of microgrids. This paper presents a two stage prediction model based on an Artificial Neural Network in order to allow Short-Term Load Forecasting of the following day in microgrid environment, which first estimates peak and valley values of the demand curve of the day to be forecasted. Those, together with other variables, will make the second stage, forecast of the entire demand curve, more precise than a direct, single-stage forecast. The whole architecture of the model will be presented and the results compared with recent work on the same set of data, and on the same location, obtaining a Mean Absolute Percentage Error of 1.62% against the original 2.47% of the single stage model.Hernández, L.; Baladrón Zorita, C.; Aguiar Pérez, JM.; Calavia Domínguez, L.; Carro Martínez, B.; Sanchez-Esguevillas, A.; Sanjuan, J.... (2013). Improved Short-Term Load Forecasting Based on Two-Stage Predictions with Artificial Neural Networks in a Microgrid Environment. Energies. 6(9):4489-4507. doi:10.3390/en6094489S4489450769Brooks, A., Lu, E., Reicher, D., Spirakis, C., & Weihl, B. (2010). Demand Dispatch. IEEE Power and Energy Magazine, 8(3), 20-29. doi:10.1109/mpe.2010.936349Chan, S. C., Tsui, K. M., Wu, H. C., Hou, Y., Wu, Y.-C., & Wu, F. (2012). Load/Price Forecasting and Managing Demand Response for Smart Grids: Methodologies and Challenges. IEEE Signal Processing Magazine, 29(5), 68-85. doi:10.1109/msp.2012.2186531Mohan Saini, L., & Kumar Soni, M. (2002). Artificial neural network-based peak load forecasting using conjugate gradient methods. IEEE Transactions on Power Systems, 17(3), 907-912. doi:10.1109/tpwrs.2002.800992Hyndman, R. J., & Fan, S. (2010). Density Forecasting for Long-Term Peak Electricity Demand. IEEE Transactions on Power Systems, 25(2), 1142-1153. doi:10.1109/tpwrs.2009.2036017McSharry, P. E., Bouwman, S., & Bloemhof, G. (2005). Probabilistic Forecasts of the Magnitude and Timing of Peak Electricity Demand. IEEE Transactions on Power Systems, 20(2), 1166-1172. doi:10.1109/tpwrs.2005.846071Amin-Naseri, M. R., & Soroush, A. R. (2008). Combined use of unsupervised and supervised learning for daily peak load forecasting. Energy Conversion and Management, 49(6), 1302-1308. doi:10.1016/j.enconman.2008.01.016Maksimovich, S. M., & Shiljkut, V. M. (2009). The Peak Load Forecasting Afterwards Its Intensive Reduction. IEEE Transactions on Power Delivery, 24(3), 1552-1559. doi:10.1109/tpwrd.2009.2014267Moazzami, M., Khodabakhshian, A., & Hooshmand, R. (2013). A new hybrid day-ahead peak load forecasting method for Iran’s National Grid. Applied Energy, 101, 489-501. doi:10.1016/j.apenergy.2012.06.009Hernández, L., Baladrón, C., Aguiar, J., Carro, B., & Sánchez-Esguevillas, A. (2012). Classification and Clustering of Electricity Demand Patterns in Industrial Parks. Energies, 5(12), 5215-5228. doi:10.3390/en5125215Hernandez, L., Baladrón, C., Aguiar, J., Carro, B., Sanchez-Esguevillas, A., & Lloret, J. (2013). Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks. Energies, 6(3), 1385-1408. doi:10.3390/en6031385Razavi, S., & Tolson, B. A. (2011). A New Formulation for Feedforward Neural Networks. IEEE Transactions on Neural Networks, 22(10), 1588-1598. doi:10.1109/tnn.2011.2163169Hernández, L., Baladrón, C., Aguiar, J., Calavia, L., Carro, B., Sánchez-Esguevillas, A., … Lloret, J. (2013). Experimental Analysis of the Input Variables’ Relevance to Forecast Next Day’s Aggregated Electric Demand Using Neural Networks. Energies, 6(6), 2927-2948. doi:10.3390/en6062927Hernandez, L., Baladron, C., Aguiar, J. M., Carro, B., Sanchez-Esguevillas, A., Lloret, J., … Cook, D. (2013). A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants. IEEE Communications Magazine, 51(1), 106-113. doi:10.1109/mcom.2013.640044

    Experimental Analysis of the Input Variables' Relevance to Forecast Next Day's Aggregated Electric Demand Using Neural Networks

    Get PDF
    Thanks to the built in intelligence (deployment of new intelligent devices and sensors in places where historically they were not present), the Smart Grid and Microgrid paradigms are able to take advantage from aggregated load forecasting, which opens the door for the implementation of new algorithms to seize this information for optimization and advanced planning. Therefore, accuracy in load forecasts will potentially have a big impact on key operation factors for the future Smart Grid/Microgrid-based energy network like user satisfaction and resource saving, and new methods to achieve an efficient prediction in future energy landscapes (very different from the centralized, big area networks studied so far). This paper proposes different improved models to forecast next day's aggregated load using artificial neural networks, taking into account the variables that are most relevant. In particular, seven models based on the multilayer perceptron will be proposed, progressively adding input variables after analyzing the influence of climate factors on aggregated load. The results section presents the forecast from the proposed models, obtained from real data.Hernández, L.; Baladrón Zorita, C.; Aguiar Pérez, JM.; Calavia Domínguez, L.; Carro Martínez, B.; Sanchez-Esguevillas, A.; Garcia Fernandez, P.... (2013). Experimental Analysis of the Input Variables' Relevance to Forecast Next Day's Aggregated Electric Demand Using Neural Networks. Energies. 6(6):2927-2948. doi:10.3390/en6062927S2927294866Zhang, Q., Lai, K. K., Niu, D., Wang, Q., & Zhang, X. (2012). A Fuzzy Group Forecasting Model Based on Least Squares Support Vector Machine (LS-SVM) for Short-Term Wind Power. Energies, 5(9), 3329-3346. doi:10.3390/en5093329Hsu, C.-C., & Chen, C.-Y. (2003). Regional load forecasting in Taiwan––applications of artificial neural networks. Energy Conversion and Management, 44(12), 1941-1949. doi:10.1016/s0196-8904(02)00225-xCarpaneto, E., & Chicco, G. (2008). Probabilistic characterisation of the aggregated residential load patterns. IET Generation, Transmission & Distribution, 2(3), 373. doi:10.1049/iet-gtd:20070280Shu Fan, Methaprayoon, K., & Wei-Jen Lee. (2009). Multiregion Load Forecasting for System With Large Geographical Area. IEEE Transactions on Industry Applications, 45(4), 1452-1459. doi:10.1109/tia.2009.2023569Pudjianto, D., Ramsay, C., & Strbac, G. (2007). Virtual power plant and system integration of distributed energy resources. IET Renewable Power Generation, 1(1), 10. doi:10.1049/iet-rpg:20060023Ruiz, N., Cobelo, I., & Oyarzabal, J. (2009). A Direct Load Control Model for Virtual Power Plant Management. IEEE Transactions on Power Systems, 24(2), 959-966. doi:10.1109/tpwrs.2009.2016607Hernandez, L., Baladron, C., Aguiar, J. M., Carro, B., Sanchez-Esguevillas, A., Lloret, J., … Cook, D. (2013). A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants. IEEE Communications Magazine, 51(1), 106-113. doi:10.1109/mcom.2013.6400446Mousavi, S. M., & Abyaneh, H. A. (2011). Effect of Load Models on Probabilistic Characterization of Aggregated Load Patterns. IEEE Transactions on Power Systems, 26(2), 811-819. doi:10.1109/tpwrs.2010.2062542Ipakchi, A., & Albuyeh, F. (2009). Grid of the future. IEEE Power and Energy Magazine, 7(2), 52-62. doi:10.1109/mpe.2008.931384Naphade, M., Banavar, G., Harrison, C., Paraszczak, J., & Morris, R. (2011). Smarter Cities and Their Innovation Challenges. Computer, 44(6), 32-39. doi:10.1109/mc.2011.187Hernández, L., Baladrón, C., Aguiar, J. M., Calavia, L., Carro, B., Sánchez-Esguevillas, A., … Gómez, J. (2012). A Study of the Relationship between Weather Variables and Electric Power Demand inside a Smart Grid/Smart World Framework. Sensors, 12(9), 11571-11591. doi:10.3390/s120911571Hernandez, L., Baladrón, C., Aguiar, J., Carro, B., Sanchez-Esguevillas, A., & Lloret, J. (2013). Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks. Energies, 6(3), 1385-1408. doi:10.3390/en6031385Perez, E., Beltran, H., Aparicio, N., & Rodriguez, P. (2013). Predictive Power Control for PV Plants With Energy Storage. IEEE Transactions on Sustainable Energy, 4(2), 482-490. doi:10.1109/tste.2012.2210255Ogliari, E., Grimaccia, F., Leva, S., & Mussetta, M. (2013). Hybrid Predictive Models for Accurate Forecasting in PV Systems. Energies, 6(4), 1918-1929. doi:10.3390/en6041918Douglas, A. P., Breipohl, A. M., Lee, F. N., & Adapa, R. (1998). The impacts of temperature forecast uncertainty on Bayesian load forecasting. IEEE Transactions on Power Systems, 13(4), 1507-1513. doi:10.1109/59.736298Sadownik, R., & Barbosa, E. P. (1999). Short-term forecasting of industrial electricity consumption in Brazil. Journal of Forecasting, 18(3), 215-224. doi:10.1002/(sici)1099-131x(199905)18:33.0.co;2-bHuang, S. R. (1997). Short-term load forecasting using threshold autoregressive models. IEE Proceedings - Generation, Transmission and Distribution, 144(5), 477. doi:10.1049/ip-gtd:19971144Infield, D. G., & Hill, D. C. (1998). Optimal smoothing for trend removal in short term electricity demand forecasting. IEEE Transactions on Power Systems, 13(3), 1115-1120. doi:10.1109/59.709108Sargunaraj, S., Sen Gupta, D. P., & Devi, S. (1997). Short-term load forecasting for demand side management. IEE Proceedings - Generation, Transmission and Distribution, 144(1), 68. doi:10.1049/ip-gtd:19970599Hong-Tzer Yang, & Chao-Ming Huang. (1998). A new short-term load forecasting approach using self-organizing fuzzy ARMAX models. IEEE Transactions on Power Systems, 13(1), 217-225. doi:10.1109/59.651639Hong-Tzer Yang, Chao-Ming Huang, & Ching-Lien Huang. (1996). Identification of ARMAX model for short term load forecasting: an evolutionary programming approach. IEEE Transactions on Power Systems, 11(1), 403-408. doi:10.1109/59.486125Yu, Z. (1996). A temperature match based optimization method for daily load prediction considering DLC effect. IEEE Transactions on Power Systems, 11(2), 728-733. doi:10.1109/59.496146Charytoniuk, W., Chen, M. S., & Van Olinda, P. (1998). Nonparametric regression based short-term load forecasting. IEEE Transactions on Power Systems, 13(3), 725-730. doi:10.1109/59.708572Taylor, J. W., & Majithia, S. (2000). Using combined forecasts with changing weights for electricity demand profiling. Journal of the Operational Research Society, 51(1), 72-82. doi:10.1057/palgrave.jors.2600856Ramanathan, R., Engle, R., Granger, C. W. J., Vahid-Araghi, F., & Brace, C. (1997). Short-run forecasts of electricity loads and peaks. International Journal of Forecasting, 13(2), 161-174. doi:10.1016/s0169-2070(97)00015-0Elman, J. L. (1990). Finding Structure in Time. Cognitive Science, 14(2), 179-211. doi:10.1207/s15516709cog1402_1Elman, J. L. (1991). Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning, 7(2-3), 195-225. doi:10.1007/bf00114844Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464-1480. doi:10.1109/5.58325Razavi, S., & Tolson, B. A. (2011). A New Formulation for Feedforward Neural Networks. IEEE Transactions on Neural Networks, 22(10), 1588-1598. doi:10.1109/tnn.2011.216316

    Artificial Neural Networks for Short-Term Load Forecasting in Microgrids Environment Energy

    Full text link
    The adaptation of energy production to demand has been traditionally very important for utilities in order to optimize resource consumption. This is especially true also in microgrids where many intelligent elements have to adapt their behaviour depending on the future generation and consumption conditions. However, traditional forecasting has been performed only for extremely large areas, such as nations and regions. This work aims at presenting a solution for short-term load forecasting (STLF) in microgrids, based on a three-stage architecture which starts with pattern recognition by a self-organizing map (SOM), a clustering of the previous partition via k-means algorithm, and finally demand forecasting for each cluster with a multilayer perceptron. Model validation was performed with data from a microgrid-sized environment provided by the Spanish company Iberdrola. (C) 2014 Elsevier Ltd. All rights reserved.Hernandez, L.; Baladron, C.; Aguiar, JM.; Carro, B.; Sanchez-Esguevillas, A.; Lloret, J. (2014). Artificial Neural Networks for Short-Term Load Forecasting in Microgrids Environment Energy. Energy. 75:252-264. doi:10.1016/j.energy.2014.07.065S2522647

    Artificial Neural Network for Short-Term Load Forecasting in Distribution Systems

    Get PDF
    The new paradigms and latest developments in the Electrical Grid are based on the introduction of distributed intelligence at several stages of its physical layer, giving birth to concepts such as Smart Grids, Virtual Power Plants, microgrids, Smart Buildings and Smart Environments. Distributed Generation (DG) is a philosophy in which energy is no longer produced exclusively in huge centralized plants, but also in smaller premises which take advantage of local conditions in order to minimize transmission losses and optimize production and consumption. This represents a new opportunity for renewable energy, because small elements such as solar panels and wind turbines are expected to be scattered along the grid, feeding local installations or selling energy to the grid depending on their local generation/consumption conditions. The introduction of these highly dynamic elements will lead to a substantial change in the curves of demanded energy. The aim of this paper is to apply Short-Term Load Forecasting (STLF) in microgrid environments with curves and similar behaviours, using two different data sets: the first one packing electricity consumption information during four years and six months in a microgrid along with calendar data, while the second one will be just four months of the previous parameters along with the solar radiation from the site. For the first set of data different STLF models will be discussed, studying the effect of each variable, in order to identify the best one. That model will be employed with the second set of data, in order to make a comparison with a new model that takes into account the solar radiation, since the photovoltaic installations of the microgrid will cause the power demand to fluctuate depending on the solar radiation.Our gratitude to CEDER-CIEMAT for providing the data to the presented work. In the same way, we want to convey our gratitude to the project partners MIRED-CON (IPT-2012-0611-120000), funded by the INNPACTO agreement of the Ministry of Economy and Competitiveness of the Government of Spain. Finally, a special mention to the help of the students Fatih Selim Bayraktar and Guniz Betul Yasar of Gazi University (Turkey), and Cristina Gil Valverde of UNED (Spain).Hernandez, L.; Baladron, C.; Aguiar, JM.; Calavia, L.; Carro, B.; Sanchez-Esguevillas, A.; Perez, F.... (2014). Artificial Neural Network for Short-Term Load Forecasting in Distribution Systems. Energies. 7(3):1576-1598. https://doi.org/10.3390/en7031576S1576159873Spencer, H. H., & Hazen, H. L. (1925). Artificial Representation of Power Systems. Transactions of the American Institute of Electrical Engineers, XLIV, 72-79. doi:10.1109/t-aiee.1925.5061095Hamilton, R. F. (1944). The Summation or Load Curves. Transactions of the American Institute of Electrical Engineers, 63(10), 729-735. doi:10.1109/t-aiee.1944.5058782Davies, M. (1959). The relationship between weather and electricity demand. Proceedings of the IEE Part C: Monographs, 106(9), 27. doi:10.1049/pi-c.1959.0007Matthewman, P. D., & Nicholson, H. (1968). Techniques for load prediction in the electricity-supply industry. Proceedings of the Institution of Electrical Engineers, 115(10), 1451. doi:10.1049/piee.1968.0258Hippert, H. S., Pedreira, C. E., & Souza, R. C. (2001). Neural networks for short-term load forecasting: a review and evaluation. IEEE Transactions on Power Systems, 16(1), 44-55. doi:10.1109/59.910780García-Ascanio, C., & Maté, C. (2010). Electric power demand forecasting using interval time series: A comparison between VAR and iMLP. Energy Policy, 38(2), 715-725. doi:10.1016/j.enpol.2009.10.007Marin, F. J., Garcia-Lagos, F., Joya, G., & Sandoval, F. (2002). Global model for short-term load forecasting using artificial neural networks. IEE Proceedings - Generation, Transmission and Distribution, 149(2), 121. doi:10.1049/ip-gtd:20020224Hernández, L., Baladrón, C., Aguiar, J., Carro, B., & Sánchez-Esguevillas, A. (2012). Classification and Clustering of Electricity Demand Patterns in Industrial Parks. Energies, 5(12), 5215-5228. doi:10.3390/en5125215Hernández, L., Baladrón, C., Aguiar, J. M., Calavia, L., Carro, B., Sánchez-Esguevillas, A., … Gómez, J. (2012). A Study of the Relationship between Weather Variables and Electric Power Demand inside a Smart Grid/Smart World Framework. Sensors, 12(9), 11571-11591. doi:10.3390/s120911571Hagan, M. T., & Behr, S. M. (1987). The Time Series Approach to Short Term Load Forecasting. IEEE Transactions on Power Systems, 2(3), 785-791. doi:10.1109/tpwrs.1987.4335210Hernandez, L., Baladrón, C., Aguiar, J., Carro, B., Sanchez-Esguevillas, A., & Lloret, J. (2013). Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks. Energies, 6(3), 1385-1408. doi:10.3390/en6031385Kim, H., & Thottan, M. (2011). A two-stage market model for microgrid power transactions via aggregators. Bell Labs Technical Journal, 16(3), 101-107. doi:10.1002/bltj.20524Zhou, L., Rodrigues, J., & Oliveira, L. (2012). QoE-driven power scheduling in smart grid: architecture, strategy, and methodology. IEEE Communications Magazine, 50(5), 136-141. doi:10.1109/mcom.2012.6194394Liang Zhou, & Rodrigues, J. J. P. C. (2013). Service-oriented middleware for smart grid: Principle, infrastructure, and application. IEEE Communications Magazine, 51(1), 84-89. doi:10.1109/mcom.2013.6400443Wille-Haussmann, B., Erge, T., & Wittwer, C. (2010). Decentralised optimisation of cogeneration in virtual power plants. Solar Energy, 84(4), 604-611. doi:10.1016/j.solener.2009.10.009Hernandez, L., Baladron, C., Aguiar, J. M., Carro, B., Sanchez-Esguevillas, A., Lloret, J., … Cook, D. (2013). A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants. IEEE Communications Magazine, 51(1), 106-113. doi:10.1109/mcom.2013.6400446Razavi, S., & Tolson, B. A. (2011). A New Formulation for Feedforward Neural Networks. IEEE Transactions on Neural Networks, 22(10), 1588-1598. doi:10.1109/tnn.2011.2163169Bishop, C. M. (1994). Neural networks and their applications. Review of Scientific Instruments, 65(6), 1803-1832. doi:10.1063/1.114483
    corecore